Section: 12 | Properties of Superconductors |
Help Manual

Page of 63
Type a page number and hit Enter.
  Back to Search Results
Type a page number and hit Enter.
Additional Information
One or more tables in this document differ to those in the book. This is due to space restrictions in the book.
Summary of table differences
The table 'TABLE 6. High Critical Magnetic-Field Superconductive Compounds and Alloys' has one or more different columns to those in the book version.
How to Cite this Reference
The recommended form of citation is:
John R. Rumble, ed., CRC Handbook of Chemistry and Physics, 102nd Edition (Internet Version 2021), CRC Press/Taylor & Francis, Boca Raton, FL.
If a specific table is cited, use the format: "Physical Constants of Organic Compounds," in CRC Handbook of Chemistry and Physics, 102nd Edition (Internet Version 2021), John R. Rumble, ed., CRC Press/Taylor & Francis, Boca Raton, FL.


L. I. Berger and B. W. Roberts

The following tables include superconductive properties of selected elements, compounds, and alloys. Individual tables are given for thin films, elements at high pressures, superconductors with high critical magnetic fields, and high critical temperature superconductors.

The historically first observed and most distinctive property of a superconductive body is the near total loss of resistance at a critical temperature (Tc) that is characteristic of each material. Figure 1(a) below illustrates schematically two types of possible transitions. The sharp vertical discontinuity in resistance is indicative of that found for a single crystal of a very pure element or one of a few well-annealed alloy compositions. The broad transition, illustrated by broken lines, suggests the transition shape seen for materials that are not homogeneous and contain unusual strain distributions. Careful testing of the resistivity limit for superconductors shows that it is less than 4 × 10–23 ohm cm, while the lowest resistivity observed in metals is of the order of 10–13 ohm cm. If one compares the resistivity of a superconductive body to that of copper at room temperature, the superconductive body is at least 1017 times less resistive.

figure 1 described below

FIGURE 1. Physical properties of superconductors. (a) Resistivity vs. temperature for a pure and perfect lattice (solid line); impure and/or imperfect lattice (broken line). (b) Magnetic-field temperature dependence for Type I or “soft” superconductors. (c) Schematic magnetization curve for Type II or "hard" superconductors.

The temperature interval ΔTc, over which the transition between the normal and superconductive states takes place, may be of the order of as little as 2 × 10–5 K or several K in width, depending on the material state. The narrow transition width was attained in 99.9999% pure gallium single crystals.

A Type I superconductor below Tc, as exemplified by a pure metal, exhibits perfect diamagnetism and excludes a magnetic field up to some critical field Hc, whereupon it reverts to the normal state as shown in the H-T diagram of Figure 1(b).

The magnetization of a typical high-field superconductor is shown in Figure 1(c). The discovery of the large current-carrying capability of Nb3Sn and other similar alloys has led to an extensive study of the physical properties of these alloys. In brief, a high-field superconductor, or Type II superconductor, passes from the perfect diamagnetic state at low-magnetic fields to a mixed state and finally to a sheathed state before attaining the normal resistive state of the metal. The magnetic-field values separating the four stages are given as Hc1, Hc2, and Hc3. The superconductive state below Hc1 is perfectly diamagnetic, identical to the state of most pure metals of the Type I or “soft” superconductor. Between Hc1 and Hc2 a “mixed superconductive state” is found in which fluxons (a minimal unit of magnetic flux) create lines of normal flux in a superconductive matrix. The volume of the normal state is proportional to –4πM in the “mixed state” region. Thus, at Hc2 the fluxon density has become so great as to drive the interior volume of the superconductive body completely normal. Between Hc2 and Hc3 the superconductor has a sheath of current-carrying superconductive material at the body surface, and above H c3 the normal state exists. With several types of careful measurement, it is possible to determine Hc1, Hc2, and Hc3. Table 6 contains some of the available data on high-field superconductive materials.

High-field superconductive phenomena are also related to specimen dimension and configuration. For example, the Type I superconductor, Hg, has entirely different magnetization behavior in high-magnetic fields when contained in the very fine sets of filamentary tunnels found in an unprocessed Vycor glass. The great majority of superconductive materials are Type II. The elements in very pure form and a very few precisely stoichiometric and well annealed compounds are Type I with the possible exceptions of vanadium and niobium.

Metallurgical Aspects. The sensitivity of superconductive properties to the material state is most pronounced and has been used in a reverse sense to study and specify the detailed state of alloys. The mechanical state, the homogeneity, and the presence of impurity atoms and other electron-scattering centers are all capable of controlling the critical temperature and the current-carrying capabilities in high-magnetic fields. Well-annealed specimens tend to show sharper transitions than those that are strained or inhomogeneous. This sensitivity to mechanical state underlines a general problem in the tabulation of properties for superconductive materials. The occasional divergent values of the critical temperature and of the critical fields quoted for a Type II superconductor may lie in the variation in sample preparation. Critical temperatures of materials studied early in the history of superconductivity must be evaluated in light of the probable metallurgical state of the material, as well as the availability of less pure starting elements. It has been noted that recent work has given extended consideration to the metallurgical aspects of sample preparation.

Symbols in tables: Tc: Critical temperature; Ho: Critical magnetic field in the T = 0 limit; θD: Debye temperature; and γ: Electronic specific heat.

TABLE 1. Selective Properties of Superconductive Elements

ElementTc/KHo/OeθD/Kγ/mJ mol–1K–1
Continued on next page...
Al1.175 ± 0.002104.9 ± 0.34201.35
Am* (α,?)0.6
Am* (β,?)1.0
Cd0.517 ± 0.00228 ± 12090.69
Ga1.083 ± 0.00158.3 ± 0.23250.60
Ga (β)5.9, 6.2560
Ga (γ)7950, HFa
Ga (Δ)7.85815, HF
Hg (α)4.154 ± 0.001411 ± 287, 71.91.81
Hg (β)3.949339931.37
In3.408 ± 0.001281.5 ± 21091.672
Ir0.1125 ± 0.00116 ± 0.054253.19
La (α)4.88 ± 0.02800 ± 101519.8
La (β)6.00 ± 0.11096, 160013911.3
Lu0.1 ± 0.03350 ± 50
Mo0.915 ± 0.00596 ± 34601.83
Nb9.25 ± 0.022060 ± 50, HF2767.80

  • aHF denotes high-magnetic field superconductive properties.

Page 1 of 63

Entry Display
This is where the entry will be displayed

Log In - Individual User
You are not within the network of a subscribing institution.
Please sign in with an Individual User account to continue.
Note that Workspace accounts are not valid.

Confirm Log Out
Are you sure?
Log In to Your Workspace
Your personal workspace allows you to save and access your searches and bookmarks.
Remember Me
This will save a cookie on your browser

If you do not have a workspace Log In click here to create one.
Forgotten your workspace password? Click here for an e-mail reminder.
Log Out From Your Workspace
Are you sure?
Create your personal workspace
First Name (Given)
Last Name (Family)
Email address
Confirm Password

Incorrect login details
You have entered your Workspace sign in credentials instead of Individual User sign in credentials.
You must be authenticated within your organisation's network IP range in order to access your Workspace account.
Click the help icon for more information on the differences between these two accounts.
Incorrect login details
You have entered your Individual User account sign in credentials instead of Workspace credentials.
While using this network, a personal workspace account can be created to save your bookmarks and search preferences for later use.
Click the help icon for more information on the differences between Individual User accounts and Workspace accounts.
My Account

Change Your Workspace Password
Current Password

New Password
Confirm New Password

Update your Personal Workspace Details
First Name (Given)
Last Name (Family)
Email address

Workspace Log In Reminder
Please enter your username and/or your e-mail address:

Email Address

Searching for Chemicals and Properties

The CRC Handbook of Chemistry and Physics (HBCP) contains over 700 tables in over 450 documents which may be divided into several pages, all categorised into 17 major subject areas. The search on this page works by searching the content of each page individually, much like any web search. This provides a challenge if you want to search for multiple terms and those terms exist on different pages, or if you use a synonym/abbreviation that does not exist in the document.

We use metadata to avoid some of these issues by including certain keywords invisibly behind each table. Whilst this approach works well in many situations, like any web search it relies in the terms you have entered existing in the document with the same spelling, abbreviation etc.

Since chemical compounds and their properties are immutable, a single centralised database has been created from all chemical compounds throughout HBCP. This database contains every chemical compound and over 20 of the most common physical properties collated from each of the >700 tables. What's more, the properties can be searched numerically, including range searching, and you can even search by drawing a chemical structure. A complete list of every document table in which the compound occurs is listed, and are hyperlinked to the relevant document table.

The 'Search Chemicals' page can be found by clicking the flask icon in the navigation bar at the top of this page. For more detailed information on how to use the chemical search, including adding properties, saving searches, exporting search results and more, click the help icon in to top right of this page, next to the welcome login message.

Below is an example of a chemical entry, showing its structure, physical properties and document tables in which it appears.

image of an example chemical entry
We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy. By continuing to use the website, you consent to our use of cookies.
Cookie Policy

Cookie Policy

We have developed this cookie policy (the “Cookie Policy”) in order to explain how we use cookies and similar technologies (together, “Cookies”) on this website (the “Website”) and to demonstrate our firm commitment to the privacy of your personal information.

The first time that you visit our Website, we notify you about our use of Cookies through a notification banner. By continuing to use the Website, you consent to our use of Cookies as described in this Cookie Policy. However, you can choose whether or not to continue accepting Cookies at any later time. Information on how to manage Cookies is set out later in this Cookie Policy.

Please note that our use of any personal information we collect about you is subject to our Privacy Policy.

What are Cookies?

Cookies are small text files containing user IDs that are automatically placed on your computer or other device by when you visit a website. The Cookies are stored by the internet browser. The browser sends the Cookies back to the website on each subsequent visit, allowing the website to recognise your computer or device. This recognition enables the website provider to observe your activity on the website, deliver a personalised, responsive service and improve the website.

Cookies can be ‘Session Cookies’ or ‘Persistent Cookies’. Session Cookies allow a website to link a series of your actions during one browser session, for example to remember the items you have added to a shopping basket. Session Cookies expire after a browser session and are therefore not stored on your computer or device afterwards. Persistent Cookies are stored on your computer or device between browser sessions and can be used when you make subsequent visits to the website, for example to remember your website preferences, such as language or font size.

Cookies We Use and Their Purpose

We use three types of Cookies - ‘Strictly Necessary’ Cookies, ‘Performance’ Cookies and ‘Functionality’ Cookies. Each type of Cookie and the purposes for which we use them are described in this section. To learn about the specific Cookies we use, please see our List of Cookies.

1. Strictly Necessary Cookies

‘Strictly Necessary’ Cookies enable you to move around the Website and use essential features. For example, if you log into the Website, we use a Cookie to keep you logged in and allow you to access restricted areas, without you having to repeatedly enter your login details. If you are registering for or purchasing a product or service, we will use Cookies to remember your information and selections, as you move through the registration or purchase process.

Strictly Necessary Cookies are necessary for our Website to provide you with a full service. If you disable them, certain essential features of the Website will not be available to you and the performance of the Website will be impeded.

2. Performance Cookies

‘Performance’ Cookies collect information about how you use our Website, for example which pages you visit and if you experience any errors. These Cookies don’t collect any information that could identify you – all the information collected is anonymous. We may use these Cookies to help us understand how you use the Website and assess how well the Website performs and how it could be improved.

3. Functionality Cookies

‘Functionality’ Cookies enable a website to provide you with specific services or a customised experience. We may use these Cookies to provide you with services such as watching a video or adding user comments. We may also use such Cookies to remember changes you make to your settings or preferences (for example, changes to text size or your choice of language or region) or offer you time-saving or personalised features.

You can control whether or not Functionality Cookies are used, but disabling them may mean we are unable to provide you with some services or features of the Website.

First and Third Party Cookies

The Cookies placed on your computer or device include ‘First Party’ Cookies, meaning Cookies that are placed there by us, or by third party service providers acting on our behalf. Where such Cookies are being managed by third parties, we only allow the third parties to use the Cookies for our purposes, as described in this Cookie Policy, and not for their own purposes.

The Cookies placed on your computer or device may also include ‘Third Party’ Cookies, meaning Cookies that are placed there by third parties. These Cookies may include third party advertisers who display adverts on our Website and/or social network providers who provide ‘like’ or ‘share’ capabilities (see the above section on Targeting or Advertising Cookies). They may also include third parties who provide video content which is embedded on our Website (such as YouTube). Please see the website terms and policies of these third parties for further information on their use of Cookies.

To learn about the specific First Party and Third Party Cookies used by our, please see our List of Cookies.

Managing Cookies

You always have a choice over whether or not to accept Cookies. When you first visit the Website and we notify you about our use of Cookies, you can choose not to consent to such use. If you continue to use the Website, you are consenting to our use of Cookies for the time being. However, you can choose not to continue accepting Cookies at any later time. In this section, we describe ways to manage Cookies, including how to disable them.

You can manage Cookies through the settings of your internet browser. You can choose to block or restrict Cookies from being placed on your computer or device. You can also review periodically review the Cookies that have been placed there and disable some or all of them.

You can learn more about how to manage Cookies on the following websites: and

Please be aware that if you choose not to accept certain Cookies, it may mean we are unable to provide you with some services or features of the Website.

Changes to Cookie Policy

In order to keep up with changing legislation and best practice, we may revise this Cookie Policy at any time without notice by posting a revised version on this Website. Please check back periodically so that you are aware of any changes.

Questions or Concerns

If you have any questions or concerns about this Cookie Policy or our use of Cookies on the Website, please contact us by email to [email protected]

You can also contact the Privacy Officer for the Informa PLC group at [email protected].

Our Cookies

Here is a list of cookies we have defined as 'Strictly Necessary':

Taylor and Francis 'First Party' Cookies


















Here is a list of the cookies we have defined as 'Performance'.

'Third Party' Cookies

Google Analytics:





The Voluntary Product Accessibility Template (VPAT) is a self-assessment document which discloses how accessible Information and Communication Technology products are in accordance with global standards.

The VPAT disclosure templates do not guarantee product accessibility but provide transparency around the product(s) and enables direction when accessing accessibility requirements.

Taylor & Francis has chosen to complete the International version of VPAT which encompasses Section 508 (US), EN 301 549 (EU) and WCAG2.1 (Web Content Accessibility Guidelines) for its products.

Click here for more information about how to use this web application using the keyboard.

This is replaced with text from the script
This is replaced with text from the script
Top Notification Bar Dialog Header
Your Session is about to Expire!
Your session will expire in seconds

Please move your cursor to continue.