For a piecewise continuous function over a finite interval ; the finite Fourier cosine transform of is If ranges over the interval , the substitution allows the use of this definition, also. The inverse transform is written. where . Note that at points of continuity. The formula makes the finite Fourier cosine transform useful in certain boundary value problems. Analogously, the finite Fourier sine transform of is and Corresponding to equation (33) we have If is defined for and is piecewise continuous over any finite interval, and if is absolutely convergent, then is the Fourier cosine transform of . Furthermore, If , then an important property of the Fourier cosine transform is where which is often useful. Under the same conditions, define the Fourier sine transform of as follows with Corresponding to (34) we have Similarly, if is defined for , and if is absolutely convergent, then is the Fourier transform of , and Also, if then
,
No. | ||
---|---|---|
1. | ||
2. | ||
3. | ||
4. | ||
5. | ||
6. | ||
7. |
, for
No. | ||
---|---|---|
1. | ||
2. | 1 | |
3. | ||
4. | ||
5. | ||
6. | ||
7. | with | |
8. | ||
9. | with | |
10. |
No. | ||
---|---|---|
1. | ||
2. | ||
3. | ||
4. | ||
5. |
, for .
No. | ||
---|---|---|
1. | ||
2. | ||
3. | ||
4. | ||
5. | ||
6. | ||
7. | ||
8. | ||
9. | ||
10. | ||
11. | with | |
12. | ||
13. | with (0 if ) | |
14. | with | |
15. | with |
No. | ||
---|---|---|
1. | ||
2. | ||
3. | ||
4. | ||
5. | ||
6. | ||
7. | ||
8. | ||
9. | ||
10. | ||
11. | ||
12. | ||
13. | ||
14. | ||
15. | ||
16. | ||
17. | ||
18. | ||
19. | ||
20. |
No. | ||
---|---|---|
1. | ||
2. | ||
3. | ||
4. | ||
5. | ||
6. | ||
7. | ||
8. | ||
9. |
No. | ||
---|---|---|
Two dimensions: let and | ||
1. | ||
2. | ||
3. | ||
4. | ||
5. | ||
6. | ||
7. | ||
8. | ||
9. | ||
Three dimensions: let and | ||
10. | ||
11. | ||
12. | ||
13. |
No. | ||
---|---|---|
1. | 1 | |
2. | ||
3. | ||
4. | ||
5. | ||
6. | ||
7. | ||
8. | ||
9. | ||
10. | ||
11. | ||
12. | ||
13. | ||
14. | ||
15. | ||
16. | ||
17. | ||
18. | ||
19. | ||
20. | ||
21. | ||
22. | ||
23. | ||
24. | ||
25. | ||
26. | ||
27. | ||
28. | ||
29. | ||
30. | ||
31. | ||
32. | ||
33. | ||
34. | ||
35. | ||
36. | ||
37. | ||
38. | ||
39. | ||
40. | ||
41. | ||
42. | (p > 0) | |
43. | ||
44. | ||
45. | ||
46. | ||
47. | ||
48. | ||
49. | ||
50. | ||
51. | ||
52. | ||
53. | ||
54. | ||
55. | ||
56. | ||
57. | ||
58. | ||
59. | ||
60. |
No. | ||
---|---|---|
1. | ||
2. | ||
3. | ||
4. | ||
5. | ||
6. | ||
7. | ||
8. | ||
9. | ||
10. | ||
11. | ||
12. | ||
13. | ||
14. | ||
15. | ||
16. |